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Abstract

In solid state NMR analysis of oriented biomembranes the samples typically have the shape of a rectangular block, formed by

stacking a number of glass slides coated with the membranes under investigation. Reference material may be provided internally in

the volume of the block or as an external layer on its surface, as described in the accompanying paper [J. Magn. Reson. 164 (2003)

104–114]. The demagnetizing field resulting in such non-spheroidal samples is inhomogeneous. It shifts and broadens the NMR lines

of both the sample and of the reference, as compared to the ideal of a spherical sample. The magnitude of these effects is typically of

the order of a few ppm. To determine the necessary corrections, a general analysis is presented here for the demagnetizing field of a

layered sample of rectangular block geometry, with the normal of the layers parallel to the main field or tilted about an axis of the

block. The correction to the line position of the block sample is found to be approximately equal to that of the spheroid which can

be inscribed into the block, and for which the correction is well known. For an external reference layer, placed on top of the block,

the correction can be found by the same approximation, invoking a simple mirror concept. The layered structure of the block can be

accounted for by using an average magnetic susceptibility. Sample and support materials contribute to that average according to

their volume filling factors. If the sample material is anisotropic at the molecular level, as e.g. lipid bilayers are, the resulting an-

isotropy of the block is reduced by the filling factor of the sample material.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

When a sample is inserted into the magnetic field of

an NMR spectrometer, a �demagnetizing field� is in-
duced in the sample, depending on its susceptibility,

shape, internal structure, and orientation. The influence

of this field on the precession frequency of a spin in the

sample is a classic problem of NMR spectroscopy, re-
ferred to as bulk magnetic susceptibility (BMS) effect. It

is absent only in homogeneous spherical samples. In

spheroidal samples it causes a shift of the NMR lines, in

samples of more general shapes also line broadening
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results. These effects are analyzed here because they are

essential in referencing NMR measurements of macro-

scopically oriented lipid membranes [1]. Previously,

BMS effects have received special attention in high res-

olution NMR [2–4] and in NMR imaging of heteroge-

neous or compartmentalized structures, such as

biological tissues and trabecular bones [5–7]. The BMS-

induced line broadening can be reduced by shimming, as
recently demonstrated by Soubias et al. [8] in a cylin-

drical sample of stacked membranes.

The samples of interest are prepared by depositing

lipid bilayers on thin glass slides and then stacking many

of those to form a layered block [1,9], like a deck of

cards, see Fig. 1a. For calibration, reference material

has to be provided. Preferably it should occupy the same

volume as the sample material and should have a
sharp line not overlapping with the spectrum of the
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Fig. 1. (a) Block shaped sample, formed by stacking a number of glass

slides coated with lipid membranes. An external reference layer may be

attached on top of the stack. (b) The inhomogeneous demagnetizing

field causes a shift and broadening of the NMR lineshapes gSðxÞ and
gRðxÞ of both sample and reference.
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membranes. When such an internal reference is im-

practical, an external reference slab may be attached to

the top of the sample stack, forming another compart-
ment there [1].

These experimental situations must be compared with

the ideal case of a spherical sample, throughout which

the field is homogeneous. Here, a narrow line would be

observed of the nominal frequency xN ;S , characteristic
of the spin under investigation and its environment. A

reference spin, likewise, would produce a narrow line of

frequency xN ;R if the reference material were spherical.
Their difference DxN is the nominal chemical shift of the
sample spin relative to the reference spin, used tradi-

tionally in NMR spectroscopy

DxN ¼ xN ;S � xN ;R: ð1Þ
In the block-shaped sample, however, the demagne-

tizing field is inhomogeneous, and the Larmor frequency

of the spin under investigation depends on its position r

in the sample compartment. Therefore, an inhomoge-
neously broadened line of frequency distribution gSðxÞ
results rather than the sharp resonance at xN ;S , see
Fig. 1b. Likewise, a broadened reference line gRðxÞ is
measured instead of the sharp peak at xN ;R. If we
characterize the broadened lines gSðxÞ and gRðxÞ by
suitably chosen dominant frequencies xS and xR, we can
define line shifts dxS and dxR of sample and reference,
respectively. Using them, the chemical shift DxN may be
expressed by the �apparent� chemical shift DxA ¼
xS � xR of the measurement and two correction terms
dxS ¼ xS � xN ;S ;

dxR ¼ xR � xN ;R;

DxN ¼ DxA � dxS þ dxR: ð2Þ

It is the purpose of this paper to determine these

correction terms, dxS and dxR, and to discuss their
dependence on the shape, orientation, and layered

structure of the stacked sample block, and of an external

reference layer. In particular, we want to find the in-

fluence which the demagnetizing field of the sample

compartment has on the reference compartment, i.e., on
dxR.
To analyze these BMS effects, we start in Section 2 by

outlining the theoretical background. The demagnetiz-

ing field of a block-shaped sample is calculated from its

magnetization. The spatial distributions of the magnetic

fields HðrÞ and BðrÞ are determined. They can be used to
derive the lineshape gðxÞ for any selected compartment.
By this formalism BMS volume effects in block-shaped
samples are discussed in Section 3. A quantitative un-

derstanding of BMS surface effects is required for ex-

ternal referencing. Section 4 explains a �mirror� scheme
which allows to express these surface effects in terms of

the bulk effects derived before. Up to that point we treat

the sample block as homogeneous, ignoring the layered

structure of the stack. Then, in Section 5, we take the

layers into account by interpreting the layered block as
an �artificial magnetic material,� characterized by an
average susceptibility. This permits calculation of the

actual fields in the membranes, yielding another small

correction.
2. Theoretical background

Fundamentals. To derive the field BðrÞ at the site r of a
nuclear spin in a sample, it is convenient [4,6] to define a

small ficticious Lorentz sphere of radius RL around r, see
Fig. 2a. It is chosen large compared to interatomic dis-
tances, thus containing a representative number of

neighboring atoms. The near field HðNÞðrÞ is produced at
r by the arrangement of all discrete magnetic moments

in the neighborhood of r. If there were no magnetic

moments outside the Lorentz sphere and if all other

effects of line shift and broadening are ignored, the

Larmor frequency of the spin at r would be

xN ðrÞ ¼ cjBðNÞðrÞj, where BðNÞðrÞ ¼ loðHðoÞ þHðNÞðrÞÞ
results from the superposition of the near field HðNÞðrÞ
and the main field HðoÞ of the NMR magnet. Here, c is
the gyromagnetic ratio of the nucleus at r, and lo the
permeability of free space. This frequency xN ðrÞ is the
quantity of primary interest in NMR spectroscopy be-

cause it is characteristic of the neighborhood of r.

Magnetic moments outside the Lorentz sphere VL
produce an additional field HðBMSÞðrÞ at r that modifies
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Fig. 2. (a) Around a spin at point r a small �Lorentz sphere� is defined.
Magnetic moments inside are dealt with individually, those outside by

continuum theory. (b) The material inside a large spherical shell,

containing the spin at r, produces no BMS effects at r. Only material

outside (hatched) causes a BMS related line shift and broadening. (c) A

shell in the form of a spheroid VSPH produces a predictable shift. The
material outside causes an additional inhomogeneous shift and

broadening.
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the Larmor frequency. This is the BMS effect. Because

the distance of those spins from r is large on an inter-

atomic scale, HðBMSÞðrÞ may be calculated by continuum
theory. Accordingly, the source of HðBMSÞðrÞ is the bulk
magnetizationMðrÞ of the material outside VL. That �far�
volume (hatched in Fig. 2) is denoted by VF . All volume
elements dV 0 at positions r0 in VF act as elementary di-
pole moments Mðr0ÞdV 0, producing jointly the field

HðBMSÞðrÞ ¼ 1

4p

ZZ
ðVF Þ

Z
½3ðMðr0ÞRÞR

�Mðr0ÞR2	jRj�5 dV 0: ð3Þ

Here, the vector R ¼ r� r0 extends from the position r0

of dV 0 to the point r of interest. As the Lorentz sphere

has been cut out of the sample, the singularity of the

integrand in Eq. (3) at R ! 0 poses no problem. Actu-
ally, despite that singularity the integral (3) has a definite

value even if it is extended over the entire sample volume

VS or over the Lorentz volume VL. This can be recog-
nized by converting the volume integral (3) into a sur-
face integral (see below). As the singularity is identical in

both cases (VS ; VL) it is possible to rewrite the BMS field
as the difference HðBMSÞ ¼ HðSÞ �HðLÞ of two fields
HðSÞðrÞ and HðLÞðrÞ which are given by expressions like
Eq. (3). For HðSÞðrÞ the integration runs over the entire
sample volume VS ,

HðSÞðrÞ¼ 1
4p

ZZ
ðVSÞ

Z
½3ðMðr0ÞRÞR�Mðr0ÞR2	jRj�5dV 0: ð4Þ

For HðLÞðrÞ an identical expression holds, with inte-
gration over the Lorentz sphere VL. These fields HðSÞðrÞ
and HðLÞðrÞ are known in magnetostatics as the demag-
netizing fields. Using them, the total field at the site of
interest can be expressed as

HðrÞ ¼ HðoÞ þHðNÞðrÞ þHðBMSÞðrÞ
¼ HðoÞ þHðNÞðrÞ þHðSÞðrÞ �HðLÞðrÞ: ð5Þ

The source of the demagnetizing fields is the magne-

tization MðrÞ. It is induced by the local flux density
according to the local magnetic susceptibility vðrÞ, which
may be a tensor if the material is anisotropic

MðrÞ ¼ vðrÞBðrÞ=lo ¼ vðrÞ½1þ vðrÞ	HðrÞ: ð6Þ
As MðrÞ is determined by HðrÞ and, conversely, HðrÞ
depends onMðrÞ, it would generally be necessary to find
HðrÞ and MðrÞ for a given vðrÞ as a simultaneous solu-
tion of Eqs. (5) and (6). For NMR samples, however,

the calculation of HðrÞ and MðrÞ is simplified because
typically jvj < 10�5. Therefore, the three terms HðNÞðrÞ,
HðSÞðrÞ, and HðLÞðrÞ in Eq. (5) are only small perturba-
tions to the main field HðoÞ and may be neglected in the

calculation ofM. The relative error incurring this way in

M is only of the order of jvj � 10�5 (corresponding to
� 10�4 ppm of chemical shift) and may well be ignored.
We characterize the direction of the main field HðoÞ ¼
Hoh

ðoÞ by a unit vector hðoÞ and obtain

MðrÞ � vðrÞHðoÞðrÞ ¼ HovðrÞhðoÞ: ð7Þ
For a general sample the demagnetizing field Eq. (4)

can now be expressed as

HðSÞðrÞ ¼ �D̂DðrÞMðrÞ ¼ �D̂DðrÞvðrÞHðoÞðrÞ
¼ �HoDðrÞvðrÞhðoÞ; ð8Þ

where D̂DðrÞ is the normalized local demagnetization
tensor of VS [4]. Its components are

DijðrÞ ¼
1

4p

ZZ
ðVSÞ

Z
½3RiRj � R2dij	jRj�5 dV : ð9Þ

At any point r inside or outside VS Eq. (8) assigns
�D̂DðrÞvðrÞHðoÞ as the demagnetizing field HðSÞðrÞ to the
given main field HðoÞ. In components, H ðSÞ

i ðrÞ ¼
�
P
j

P
k DijðrÞvjkðrÞh

ðoÞ
k for i; j; k ¼ fx; y; zg. Definition

(9) shows that D̂DðrÞ is a purely geometrical function,
depending only on the shape of VS . It is symmetric in i; j.
Its eigenvectors represent those directions of hðoÞ for
whichMðrÞ is parallel to hðoÞ. The associated eigenvalues
DiiðrÞ obey the sum rule [10]
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Tr½D̂DðrÞ	 ¼ D11ðrÞ þD22ðrÞ þD33ðrÞ ¼ 1: ð10Þ

For a spherical sample symmetry requires D11ðrÞ ¼
D22ðrÞ ¼ D33ðrÞ ¼ 1=3 and D̂D becomes scalar, and the
demagnetizing field of the Lorentz sphere in a material

with homogeneous v is

HðLÞ ¼ �vHðoÞ=3: ð11Þ
The Larmor frequency xðrÞ of a spin at position r is

determined by the magnitude of the local field,
xðrÞ ¼ cjBðrÞj. Compared to the frequency xN ¼
clojHðoÞ þHðNÞj of a spin free of BMS effects, the
frequency in a general sample is offset by dxðrÞ ¼ xðrÞ�
xN ¼ cdjBðrÞj, where djBðrÞj ¼ jBðrÞj � jBðNÞðrÞj is the
modification produced by the BMS field Eq. (3) in the

vacuum representation. This offset is found by evaluat-

ing djB2j ¼ B2 � BðNÞ2 ¼ 2jBjdjBj ¼ 2loBðNÞHðBMSÞ. We
assume now that the susceptibility v is isotropic. Ne-
glecting terms of order v2 and higher

dxðrÞ=xN ¼ djBðrÞj=BðoÞ

¼ HðoÞ½HðSÞðrÞ �HðLÞðrÞ	=H 2o : ð12Þ

Consequently, BMS effects result only from that

component of the demagnetizing field HðSÞðrÞ which is
parallel to the main field HðoÞ. Inserting here Eqs. (3)
and (11) we find the BMS shift, normalized to vxN

dxðrÞ
vxN

¼ djBðrÞj
vBðoÞ ¼ 1

3
� hðoÞD̂DðrÞhðoÞ ¼ 1

3
�DhhðrÞ: ð13Þ

Here, DhhðrÞ ¼ hðoÞD̂DðrÞhðoÞ is the component of D̂DðrÞ
along the direction hðoÞ of the main field. If the sample is

oriented with its z axis (unit vector zo) along the main
field, Eq. (13) simplifies,

dxðrÞ
vxN

¼ djBðrÞj
vBðoÞ ¼ 1

3
�DzzðrÞ; ð14Þ

where

DzzðrÞ ¼
1

4p

ZZ
ðVSÞ

Z
½3ðRzoÞR� jRj2zo	jRj�5 dV 0: ð15Þ

Eqs. (13) and (14) are compact formulations of the

general BMS effect of homogeneous samples. The shape

and orientation of the sample volume VS determine the
demagnetization function DhhðrÞ which, in turn, governs
the local modification dxðrÞ of the precession frequency.
At such points r in the sample where Dhh ¼ 1=3, the
modification vanishes, dxðrÞ ¼ 0. This situation exists,
for example, throughout a spherical sample or, by

symmetry and Eq. (10), at the center of a cube. At other

points the deviation of Dhh from this special value 1/3
gives directly the BMS modification of the normalized

precession frequency. In the typical diamagnetic case

(v < 0), the modification is positive (dx > 0 or dB > 0)
when Dzz > 1=3. In spectroscopists� jargon this is a
�downfield� shift.
An alternative formulation of the BMS field helps to
clarify the properties of HðBMSÞðrÞ and simplifies nu-
merical calculations of D̂DðrÞ. It is based on the scalar
magnetic potential uðrÞ by which the demagnetizing
field can be expressed as HðSÞðrÞ ¼ �graduðrÞ. The
sources of u follow from divBðrÞ ¼ 0. As HðSÞðrÞ is a
smoothly varying field, continuum theory applies, and

the average hHðNÞðrÞ þHðLÞðrÞi ¼ 0 vanishes over VL.
Therefore, BðrÞ ¼ loðHðoÞ þHðSÞðrÞ þMðrÞÞ and, ne-
glecting terms of higher order in v,

divHðSÞðrÞ ¼ �divMðrÞ � �HðoÞðrÞgradvðrÞ: ð16Þ
With homogeneous samples the sources of the de-

magnetizing field are ficticious �magnetic charges� at the
discontinuities of vðrÞ, on the surface of the sample.
According to this well known concept, a magnetic charge

density rðrÞ ¼ vHoaonh
ðoÞ ¼ vHo cos ghðrÞ may be postu-

lated to exist on the surface AS of the sample. This rðrÞ
generates the magnetic field HðSÞðrÞ in the same way as
electric charges would generate an electric field. Here, aon
is the outward normal unit vector of the sample volume,

and ghðrÞ is the angle between aon and hðoÞ. The potential
uðrÞ of the surface charges rðr0Þ is found by integration
over all surface elements dA0 ¼ ao dA0. The demagneti-
zation tensor then follows by the gradient operation

uðrÞ
vHo

¼ 1
4p

Z
ðAS Þ

Z
hðoÞ dA0

jRj ¼ 1
4p

Z
ðASÞ

Z
cos ghðr0ÞdA0

jRj ; ð17Þ

DijðrÞ ¼
1

4p

Z
ðASÞ

Z
jRj�3Ri dA0

j: ð18Þ

This is an alternative formulation of DijðrÞ. As the in-
tegrations in Eqs. (17) and (18) extend over the surface

of the sample, the integrands are regular at all points r

inside the sample. Consequently, in Eqs. (4) and (9) the

singularity at jRj ! 0 does not affect the integration.
This justifies the decomposition of the BMS field into

the two demagnetizing fields HðSÞðrÞ and HðLÞðrÞ which
had been introduced in Eq. (5).
3. BMS volume effects

Spheroidal samples. Although we are interested in

layered block-shaped samples, we start by considering

samples which have the shape of a general spheroid with

homogeneous susceptibility (v ¼ const). A spheroid, in

this context, is a sphere �stretched� by individual factors
along three orthogonal axes. When two of the stretching

factors are equal, an ellipsoid of revolution results. The

intersection of a spheroid with any plane is an ellipse.

Samples having the shape of such spheroids will serve

later on for comparison with the block-shaped samples.

It is well known [11] that inside a spheroid, placed into a

homogeneous field BðoÞ, both the magnetization M and
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the demagnetizing field HðSÞ ¼ �D̂DM are homogeneous,
and D̂D and x are independent of position r. The spectrum
is a narrow line, therefore. Its frequency is determined by

Dhh according to Eq. (13) and depends on the orientation
of the spheroid. Generally the direction of HðSÞ is not
parallel toM, because D̂D is a tensor.Onlywhen the sample
is oriented with one of its principal axes (i ¼ x; y; z) along
the main field BðoÞ, the parallelism exists and
DzzðrÞ ¼
local demagnetizing field jH ðSÞ

z ðrÞj at position r in sample
uniform demagnetizing field jH ðSÞ

z j in an infinite slab-shaped sample
:

Fig. 3. Demagnetization factor DzðaÞ of simple spheroidal samples with
aspect angle a ¼ arctanðaz=axÞ (right ordinate). The left ordinate gives
the normalized frequency deviation for diamagnetic samples.
HðSÞ ¼ �DiM � �vDiB
ðoÞ=lo: ð19Þ

The three eigenvalues Dii are independent of position,
too, and traditionally they are called the demagnetizing

factors Di of the spheroid. Accordingly, the sum rule Eq.
(10) reads for a spheroid

P
Di ¼ 1. Assuming v > 0

(paramagnetic case) the negative signs in Eq. (19) indi-

cate that HðSÞ is directed opposite to the main field HðoÞ.
This is the reason whyHðSÞðrÞ is called the demagnetizing
field. For a spheroid with semi-axes ax; ay ; az; elementary
theory [11] gives the demagnetization factors as definite

integrals,

Diðax; ay ; azÞ ¼
axayaz
2

Z 1

0

du
ðuþ a2i ÞW ðuÞ ; ð20Þ

where W ðuÞ ¼ ½ðuþ a2xÞðuþ a2yÞðuþ a2z Þ	
1=2
. Each Di de-

pends actually on only two variables, i.e., on two ratios

of the three axes fax; ay ; azg. For a number of simple
spheroids the Di are listed in Table 1. Here, the shape of
the spheroids is characterized by their aspect ratio
q ¼ az=ax and aspect angle a ¼ arctanðqÞ. By varying
0 < q < 1 or, correspondingly, 0 < a < 90�, the widest
possible range is covered.

For general spheroids the values of the Di may be
taken from published tables [12]. For practical usage it

may be more convenient to compute the Di by numerical
evaluation of Eq. (20), using any standard integration

routine [13–15] which replaces the integral (20) by a sum
of e.g. 105 terms.
Table 1

Demagnetization factors of spheroids with semi-axes ax, ay , and az ¼ qax
Spheroid Axes q

Infinite slab in xy plane ax ! 1; ay ! 1 ¼ 0
Thin circular disk in xy plane ax ¼ ay ; az � ax � 1
Sphere ax ¼ ay ¼ az ¼ 1
Elliptical rod along y axis ay ! 1
Circular rod along y axis ay ! 1; az ¼ ax ¼ 1
Long ellipsoid along z axis az ! 1; ay ¼ ax � 1
Two examples from Table 1 are of particular interest
concerning block-shaped samples. One is the sphere al-

ready mentioned. The other one is the infinitely ex-

tended slab, the limiting form of an oblate spheroid,

oriented normal to HðoÞ. Here, we have Dz ¼ 1, and
therefore HðSÞ

z ¼ �vHo. This result permits a general
interpretation of the factor Dz and, more generally, of
the function DzzðrÞ as the ratio
For an ellipsoid of revolution (ax ¼ ay and az ¼ qax)
we have Dx ¼ Dy ¼ ð1� DzÞ=2 and the demagnetizing
factor Dz is [11]

DzðqÞ ¼
q ln½qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
	

ðq2 � 1Þ3=2
� 1

q2 � 1 : ð21Þ

This expression evaluates to a real Dz for q > 1 as well
as for q < 1. The dependence of Dz on the aspect angle
a ¼ arctanðqÞ is illustrated in Fig. 3 at the right ordinate.
The left ordinate gives the normalized frequency devia-
Dx Dy Dz

0 0 1

1� Dz=2 1� Dz=2 1� qp=2
1/3 1/3 1/3

q=ðqþ 1Þ 0 1=ðqþ 1Þ
1/2 0 1/2

1� Dz=2 1� Dz=2 ðln 2q� 1Þ=q2
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tion dx for diamagnetic spheroids. A sample in the form
of a flat spheriodal disk, with dimensions ax ¼ ay ¼ 10
mm and az ¼ 4:8 mm and with the susceptibility of glass
(v � �12� 10�6), for example, has the aspect angle
a � 30� and a demagnetization factor Dz � 0:54. A
correction of ð�vÞðDz � 1=3Þ � þ2:5 ppm would have
to be applied in the sense of Eq. (1) to any measured line

to obtain the chemical shift.

Non-spheroidal samples have inhomogeneous demag-
netizing fields HðSÞðrÞ. Ignoring all other effects of line
shift and broadening, the spatial distribution of the BMS

related shift dxðrÞ in the sample results in a lineshape

gSðx � xNÞdx ¼ vxN
Vo

Z
½r:dxðrÞ2dx	

ZZ
S2ðrÞdV ðrÞ: ð22Þ

Here, xN is the frequency that would be measured with a
spherical sample. The integration extends over all vol-

ume elements dV ðrÞ of the sample which are situated at
points r at which the local frequency offset dxðrÞ falls in
the interval x . . . ðx þ dxÞ. The contribution of any
such volume element to the spectral density gSðx � xN Þ
is proportional to dV ðrÞ. Computationally, the deter-
mination of gSðx � xN Þ is a sorting procedure, equiva-
lent to the formation of a histogram [3,5]. A weighting

function S2ðrÞ may be included in Eq. (22) to take into
account the spatial distribution of the excitation and

detection sensitivities in the sample volume. The nor-
malization factor Vo is a chosen so that

R
gSðx�

xNÞdx ¼ 1.
For a qualitative understanding of the lineshape Eq.

(22) of homogeneous samples of general shape we have a

closer look at the role of the Lorentz sphere. According

to our derivation, the origin of the inhomogeneity of

HðSÞðrÞ is the magnetization outside the Lorentz sphere,
indicated by the hatched area in Fig. 2a. The Lorentz
sphere itself has a demagnetizing fieldHðLÞ ¼ �ðv=3ÞHðoÞ

which is independent of its radius RL. It follows, there-
fore, that a spherical shell, concentric with the Lorentz

sphere and contained entirely in the sample volume VS ,
does not contribute to the demagnetizing field HðSÞðrÞ.
Such a shell causes no BMS related shift nor broadening

of NMR lines. Therefore, the value of RL chosen in de-
fining the �near field� HðNÞðrÞ is not critical. Actually, RL
may be increased up to the limit where the sphere touches

the walls of the sample, as indicated in Fig. 2b, without

affecting the demagnetizing field HðSÞðrÞ.
One may try in this way to identify that volume VF

which is responsible for the BMS effects at a given r by

cutting out of the sample the largest possible sphere

containing r. Inside that sphere inhomogeneity of

HðSÞðrÞ results only from the outside volume elements.
At the center of a cubic sample (ax ¼ ay ¼ az ¼ a), for
example, maximally a sphere of radius a can be cut out,
leaving the eight corner sections as the sources of in-

homogeneity.
Extending this procedure, spheroidal cut-outs may be
considered instead of spheres, see Fig. 2c. If such a

spheroidal �core� itself were a sample, its internal field
would be homogeneous, resulting in a sharp but shifted

NMR line. The volume outside the core, however, adds

inhomogeneity to the field, causing line broadening and,

possibly, additional shift. For block-shaped samples

these considerations suggest that the shift of the overall

line should be roughly comparable to that of the in-
scribed spheroid. This expectation is confirmed by the

calculations given below.

For block-shaped samples the distribution of demag-

netization D̂DðrÞ can be found by performing the inte-
gration Eq. (15), using standard symbolic manipulation

[13,14]. The simplest situation exists when the block is

aligned with the field as shown in Fig. 1. In evaluating

for this case the volume integral (15) over the block-
shaped volume VS , the singularity at R! 0 is correctly
accounted for, and the typical components of the D̂DðrÞ
tensor can be cast in the following form:

DzzðrÞ ¼
1

8p

X
i¼p;m

X
j¼p;m

X
k¼p;m

½P ðþÞ
ijk � P ð�Þ

ijk 	; ð23Þ

DxyðrÞ ¼
1

8p

X
i¼p;m

X
j¼p;m

X
k¼p;m

½QðþÞ
ijk � Qð�Þ

ijk 	; ð24Þ

where

P ð�Þ
ijk ¼ arctan½XiZk; ðY 2j þ Z2k � YjRijkÞ	;

Qð�Þ
ijk ¼ ln½X 2i Z2k ðY 2j þ Z2k � YjRijkÞ

2	;

Rijk ¼ ½X 2i þ Y 2j þ Z2k 	
1=2

;

ð25Þ

Xp ¼ ax þ x; Yp ¼ ay þ y; Zp ¼ az þ z;
Xm ¼ ax � x; Ym ¼ ay � y; Zm ¼ az � z:

In Eq. (25) the arctan ( ) function with two arguments is

employed whose functional range is restricted to

�p . . .þ p. The summation indices i, j, k assume the
values p and m, yielding a total of 16 terms. They are
clearly associated with the eight corners of the block.
The remaining tensor components, beyond Eqs. (23,24),

can be obtained by cyclic interchange of x; y; z. The di-
agonal components are in the range 0 < DiiðrÞ < 1 when
r is inside a block-shaped sample. These results Eqs.

(23,24) are in full agreement with the treatment by

Durney et al. [5].

When the block-shaped sample is aligned with one of

its axes along the field (h ¼ 0), Eq. (23) is sufficient for
the evaluation of xðrÞ. We determined the lineshapes
gSðx � xN Þ for a number of block-shaped samples, as-
suming the sensitivity to be uniform throughout

(S2ðrÞ ¼ 1). The frequencies xðrÞ were calculated for all
positions of a three-dimensional grid with up to 106

points, and the xðrÞ then sorted. Fig. 4 shows the results
for square blocks of various heights. The frequency axis



Fig. 4. Lineshapes gSðx � xN Þ of samples in the form of square blocks
(ax ¼ ay ) of various heights (az ¼ qax). The parameter at the curves is
the aspect ratio q.

Fig. 5. Normalized shift of the peak frequency xSðaÞ of samples having
the shape of square blocks (ax ¼ ay) with aspect angle a. The thin
broken lines mark the half maximum height of the lines. For com-

parison the demagnetization DzðaÞ for the inscribed spheroids (ax ¼ ay )
is reproduced from Fig. 3 (heavy broken line, right ordinate). The

ordinates are labeled in the same way as in Fig. 3.
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is normalized by vxN , assuming v > 0. For diamagnetic
samples the frequency offset has the opposite sign. These

spectra illustrate the influence of the BMS field. All lines
are broadened, with sharp peaks, pronounced shoulders,

and clearly defined upper and lower boundaries, xmax
and xmin. The warped lineshapes are no computational
artefacts but reflect the spatial structure of the demag-

netizing fields HðSÞðrÞ. Similar shapes are known from
cylindrical samples [3]. In the limit of thin block-shaped

samples (q� 1), demagnetization is strongest (Dz ! 1).
The resulting lineshapes are shifted to lower frequencies
by nearly the maximum possible value, ð2=3ÞvxN , rela-
tive to a spherical sample. Their peaks represent, in the

sense of Fig. 3c, the �core region� of fairly good field
homogeneity in these thin samples. The high-frequency

�tails� result from the inhomogeneity caused by the four
corner regions, where demagnetization is weakest and

inhomogeneity strongest. For tall samples (q� 1) the
situation is reversed. Their frequency spectra show
nearly the maximum possible shift to higher frequencies,

ð1=3ÞvxN . Their peaks result from the central regions
of the samples, where demagnetization is weakest. Their

low-frequency tails reflect the stronger demagnetiza-

tion of the top and bottom regions. For q ¼ 1 the
sample is a cube. Its shape is closest to that of the

sphere. Not surprisingly, the spectral shift is smallest

here. The inhomogeneity is most pronounced at the
eight corners, however, producing strongly asymmetric

line broadening.

For a quantitative assessment of the BMS related line

shifts and of the appropriate corrections, it is necessary

to assign a characteristic frequency xS or xR to such a
line of sample or reference, respectively. This is an ill-
defined problem due to the asymmetry of the lineshapes
and, from an experimental viewpoint, due to the non-

uniformity of practical sensitivity distributions S2ðrÞ.
Therefore, xS or xR is chosen here pragmatically as the
frequency xP of the prominent peak which exists in all
these lineshapes. Likewise, despite of asymmetries, we

will measure the width of a line simply at half maximum

height. These definitions are reasonable because they

emphasize the contribution by the �core� region of the
sample or reference volumes, where both the field and

the sensitivity are most uniform. These regions are

similar, in a broad sense, to the inscribed spheroid. In

any block-shaped sample that spheroid occupies a

fraction p=6 � 0:52 of the sample volume. Therefore, it
is not surprising that the core region dominates, by its

contribution to xðrÞ, the lineshape and produces the
peak [3,4].
Fig. 5 shows for square block-shaped samples how

the frequency xP of the peak depends on the aspect
angle a. For comparison, the frequency shift for the
spheroid that can be inscribed into the blocks is also

shown (heavy broken line), as derived from Eq. (21).

Near aM ¼ 43� the frequency shift of the square block
vanishes, dxP ¼ 0. Accordingly, a block with the asso-
ciated ratio of axes, qM ¼ az=ax � 0:94, may be called a
�magic block� in analogy to the �magic cylinder� [6,3].
This block is slightly shorter than a cube (q ¼ 1), for
which dxP ¼ 0 holds in the center. The difference may
be understood from the definition of xP by the peak of
gðx � xN Þ and from the structure of the field, whose
component HðSÞ

z increases from the center along the �z
directions, but decreases in all transverse directions.

We compare now in Fig. 5 the line shifts of square
blocks with those of the inscribed spheroids. The peak

frequency xP will be called xS from here on when it
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refers to the sample block. It is seen that the similarity
suggested by Fig. 2c does indeed exist, but with mod-

erate accuracy. Finite differences remain which can

clearly be attributed to the influence of the corners of the

block, outside the inscribed spheroid. The sign of

the difference depends on a. For �flat� samples (a < 40�),
the line shift dxS of the block is larger than dx of the
equivalent spheroid. Apparently, the demagnetizing

field in the center of flat samples is stronger in a block
than in its spheroid. For �tall� samples (a > 40�) the
situation is reversed. In no case, however, does the line

shift significantly exceed the width of the inhomoge-

neously broadened line. In other words, the (sharp) line

of the inscribed spheroid is essentially always within the

width of the asymmetrically broadened line of the block.

In this sense the BMS induced line shift of a sample

having the shape of a square block may well be ap-
proximated by that of the inscribed spheroid. The re-

maining uncertainty is less than 0.5 ppm.

This approximate determination of dx works also
with samples in the form of stripes of rectangular cross-

section, arranged with their long axis normal to the

main field, see Fig. 1a. This is the geometry typical in the

measurement of lipid membranes supported by long

glass slides [1]. Using Eq. (23) we calculated their de-
magnetizing fields in the limit ay ! 1. This was
achieved by evaluating dxðrÞ in the central region
(jyj < 0:1ay), where the field is fairly homogeneous, of
moderately elongated samples (ay ¼ 5ax). The results are
summarized in Fig. 6. Again, the shifts dxS of the
broadened spectra of the blocks are compared with the

shifts of the sharp lines of the inscribed spheroids, i.e., of

rods of the equivalent elliptical cross-section. They are
spheroidal, their frequency shift follows from Eq. (14)
Fig. 6. Normalized shift of the peak frequency xSðaÞ of samples having
the shape of elongated blocks, oriented transversely to the field

(ay ! 1), with aspect angle a. The thin broken lines mark the line
widths at half maximum height. For comparison the demagnetization

DzðaÞ of the inscribed spheroidal samples (ay ! 1) is given (heavy
broken line), which follows from Eq. (21).
and Dz ¼ q=ðq� 1Þ. As in Fig. 5, the comparison shows
that blocks/stripes and spheroids differ only slightly in

their line shifts. The difference is, again, roughly within

the widths of the inhomogeneously broadened line.

Compared with the spectra of square blocks (Fig. 5), the

line broadening in stripes is less pronounced. It may be

speculated that the stronger broadening in the square

blocks results from the edges along the x direction whose
influences are negligible in the long samples.
Approximation of the sample by the inscribed

spheroid should work well also for a stack of circular

disks, forming a cylindrical sample [8] that is suitable for

magic angle-oriented sample spinning (MAOSS) [16].

The shape of such a cylinder is intermediate between a

block and a spheroid (all having the same axes).

Therefore, the field inhomogeneity, caused by the ma-

terial outside the spheroid, should be less pronounced in
the cylinder than in the block.

When the sample is tilted with respect to the main field

we choose to describe BðoÞ in the fx; y; zg coordinate
system of the sample. For simplicity we restrict the

discussion to a rotation about the y axis, with tilt angle h.
Consequently BðoÞ has x and z components, BðoÞ ¼
loHoðxo sin h þ zo cos h), where xo and zo are unit vec-

tors. The generalization to a general orientation is
straightforward, but lengthy. We now allow the samples

to have uniaxially anisotropic susceptibility, but require

them still to be homogeneous. In oriented membranes,

the anisotropy is aligned with the z axis of Fig. 1, having
a component vnðrÞ for fields normal to the membrane
and vtðrÞ when they are tangential. Thus, a relevant
example would be a layered block with negligibly thin

glass layers. Eq. (7) now reads

MðrÞ ¼ Ho½vtðrÞ sin hxo þ vnðrÞ cos hzo	: ð26Þ
Using Eq. (8) the demagnetizing fields of the sample and
of the Lorentz sphere are, respectively,

HðSÞðrÞ ¼ � ½DxxðrÞvtðrÞ sin h þDxzðrÞvnðrÞ cos h	xoHo
� ½DyxðrÞvtðrÞ sin h þDyzðrÞvnðrÞ cos h	yoHo
� ½DzxðrÞvtðrÞ sin h þDzzðrÞvnðrÞ cos h	zoHo;

ð27Þ

HðLÞðrÞ ¼ �½vtðrÞ sin hxo þ vnðrÞ cos hzo	Ho=3; ð28Þ

where DijðrÞ are the local components of the demagne-
tization tensor. Inserting Eqs. (27) and (28) into (12)

yields the spatial distribution of the local frequency

offset

dxðrÞ
xN

¼ vnðrÞ
1

3

�
�DzzðrÞ

�
þ sin2 h vtðrÞ

1

3

��
�DxxðrÞ

�

� vnðrÞ
1

3

�
�DzzðrÞ

��

� sin h cos h½v ðrÞ þ v ðrÞ	D ðrÞ: ð29Þ
t n xz



Fig. 7. Normalized lineshapes gSðx � xN Þ of one particular block-
shaped sample (az ¼ 0:2ax and ay ! 1) tilted through selected angles
h of rotation.
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A tilted spheroidal sample is considered first. Here, the
demagnetizing field is homogeneous. Therefore, the line

is narrow but generally shifted from the frequency xN of
a spherical sample. The demagnetization tensor is di-

agonal and reduces to the demagnetization factors,

DxxðrÞ ! Dx and DzzðrÞ ! Dz, given by Eq. (20). The y
components play no role because the main fieldHðoÞ is in
the xz plane. The relative frequency offset resulting from
BMS effects in the tilted spheroid is

dxðhÞ
xN

¼ vn
1

3

�
� Dz

�

þ sin2 h vt
1

3

	�
� Dx



� vn

1

3

	
� Dz


�
: ð30Þ

The first bracket ½ 	 is the offset at h ¼ 0, known from
Eq. (14). The second bracket describes the variation of

dx when the sample is tilted, i.e., the apparent anisot-
ropy. Both the material anisotropy ðvt � vnÞ and the
shape anisotropy ðDx � DzÞ contribute here. For iso-
tropic samples Eq. (30) simplifies to

dxðhÞ
vxN

¼ 1

3

�
� Dz

�
þ Dz½ � Dx	 sin2 h: ð31Þ

Depending on the relative values of Dx and Dz, i.e., on
the shape of the sample, an angle ho may exist at which
dxðhoÞ ¼ 0. In particular, if the sample is symmetric
about the z axis, we have Dx ¼ Dy and Dz ¼ 1� 2Dx. In
that case ho � 54:7�, identical to the �magic angle�. This
coincidence is fortunate for MAOSS applications, as

it alleviates the need to compensate for BMS-induced

effects [16]. This consideration applies to samples of

cylindrical as well as square cross-sections.

In a tilted block-shaped sample the demagnetizing field

is inhomogeneous, and generally the off-diagonal term
DxzðrÞ contributes in Eq. (29). Therefore, at any tilt
angle h, the spectral shift dxðrÞ varies with positions r in
a specific manner, different from that at h ¼ 0. The
broadened lineshape changes continuously as the sample

is tilted. This is illustrated in Fig. 7 for a block of ar-

bitrarily selected dimensions (long rectangular stripe

normal to the field, ay ! 1, aspect ratio q ¼ ax=az ¼
0:2, aspect angle a � 11:3�). Due to those changes in the
lineshape it may seem that there is no simple description

of the angular dependence of the line shift. However, the

approximation by the inscribed spheroid which pro-

duces the line peak works here, too. At h ¼ 0� the peak
is shifted to its extreme negative position, dxS=ðvxN Þ �
�0:53, in agreement with the demagnetizing factor
Dz � 0:86 read from Fig. 6. When the sample is tilted to
h ¼ 90� the x axis of the sample becomes aligned with
the main field and the normalized shift of the peak

reaches +0.24. In this orientation the sample may also

be perceived as a rectangular stripe of aspect ratio

q2 ¼ 5 in h ¼ 0� orientation. Again the shift is in
agreement with the demagnetizing factor Dz � 0:09 gi-
ven by Fig. 6 for q2 ¼ 5. At intermediate tilt angles the
peak positions of Fig. 7 follow in good approximation

the sin2 h variation predicted by Eq. (31) for a spheroidal
sample inscribed into the block.

The symmetry just mentioned for a 90� tilt may be
used to check the self-consistency of the numerical in-

tegration procedure. Generally, when a sample is tilted

from any angular orientation h1 to a new orientation
h2 ¼ h1 � 90�, it becomes equivalent to another sample
at orientation h1 but with q2 ¼ 1=q1. In comparing such
pairs of �conjugated� samples no discrepancy is found in
the frequency offsets dxS exceeding �0:02vxN . This
corresponds to a chemical shift of � 0:2 ppm. We
therefore estimate that the accuracy of our calculations

is of the same order.
4. BMS surface effects

For external referencing of stacks of membranes, the

reference material is typically attached in the form of a

thin slab directly onto the surface of the sample, as

shown in Fig. 1a and as described in the accompanying

paper [1]. To find the BMS related effects in that situa-
tion it is necessary to evaluate the demagnetizing field

HðSÞðrÞ on the surface of the sample. For block-shaped
samples this problem may be solved by a simple concept

which will be discussed now.

From a practical point of view the key question with

external referencing is the mutual influence which sam-

ple and reference material have on each other regarding

line shifts and broadening. If the sample and reference
compartments were measured separately, they would

experience different BMS-related line shifts and broad-

enings, because they have different shapes. When they

are brought into contact and are measured jointly, the

demagnetizing field of either compartment modifies the
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frequencies in the other one, causing additional shifts
and broadenings. A first answer to this problem is

possible in the limit where the volume of the reference

material (including its container) is negligible compared

to the sample volume. In that limit the demagnetizing

influence of the reference on the sample is negligible,

too. Conversely, however, the bulk sample block has

profound influence on the frequency of the thin refer-

ence. To find that influence, the demagnetizing field
must be determined for the combination of both com-

partments, and from it the spectra Eq. (22) must be

evaluated separately for either compartment.

When the sample block with the attached external

reference is aligned with the main field (h ¼ 0�) as in
Fig. 1a, the demagnetizing fieldHðSÞðrtÞ at the top surface
z ¼ þaz can be found from the model which postulates
�magnetic charges� rðrÞ as the sources of HðSÞðrÞ. For
simplicity we assume that the susceptibilities of sample

and reference are equal. Consequently there is a homo-

geneous positive charge density rðþÞ ¼ vHo on the top
surface of the sample block, and a corresponding nega-

tive charge density rð�Þ ¼ �vHo on the bottom. The field
HðSÞðrÞ resulting from these charges is sketched in Fig. 8a.
It may be viewed as the superposition of two contribu-

tions, produced separately by rðþÞ and rð�Þ, see Fig. 8b
and c. Immediately adjacent to either layer of charges the

fields of these charges are homogeneous, their magnitude

being jHðSÞðþÞðrÞj ¼ jrj=2. These field regions dominate
the demagnetization in the reference compartment on the

top of the block. The reference material �sees� such a
homogeneous field produced by rðþÞ of the combined
block, as shown in Fig. 8b. The negative charges rð�Þ are
farther away. They produce a weaker and generally in-
homogeneous field HðSÞð�ÞðrtÞ, sketched in Fig. 8c. That
field can be specified more precisely by adding a mirror

image of the sample on top of the sample. Sample and

image form a new block which will be dubbed �M-block�.
It has the same cross-section (2ax � 2ay) as the actual
sample, but its height (4az) is doubled, see Fig. 8d.
Therefore, top and bottom of that M-block carry the

same charge densities rðþÞ and rð�Þ as the original block.
(a) (b) (c) (d)

Fig. 8. (a) The demagnetizing field HðSÞ of a block-shaped sample with
attached reference layer may be understood as being generated by

fictive �magnetic surface charges�. Assuming vR ¼ vS > 0, positive
charges exist on the top surface of the reference layer, producing the

field component shown in (b), and negative charges at the bottom

produce the component shown in (c). In the reference layer, the field

component from the negative charges is equal to half the field in the

center plane of the M-block, shown in (d).
In the center plane of the M-block the charges rð�Þ

produce a field which is exactly the required HðSÞð�ÞðrtÞ.
A second, symmetrical contribution comes from the

charges at the top of the M-block. Therefore, the z
component of the required field HðSÞð�ÞðrtÞ is half of the
field in the center plane of theM-block. According to this

construction, the spectral offset of the external reference

compartment can be expressed as

dxRðrtÞ
vxN

¼ 1
3
� 1
2
½1þDzz;M-blockðrcÞ	: ð32Þ

Here, rc denotes the center plane of the M-block, coin-

cident with the top surface rt of the combination of

sample and reference. Approximating now the field in

the M-block by the field in the inscribed M-spheroid, we

arrive at

dxRðh ¼ 0�Þ
vxN

¼ � 1
2

1

3

�
þ Dzðax; ay ; 2azÞ

�
ð33Þ

for the BMS-related line shift of the reference com-

partment. Here, (ax; ay ; az) are the semi-axes of the
sample block and Dz is given by Eq. (20). In approxi-
mating the M-block by its equivalent spheroid, similar

limitations apply, of course, as discussed above.

To illustrate this result we consider a sample having
the shape of a cube. At its center Dx ¼ Dy ¼ Dz ¼ 1=3,
and Eq. (13) shows that the local line shift vanishes

there. The same had been concluded above for the peak

of the broadened line of the entire sample. For a thin

external reference layer placed onto the top surface,

however, Eq. (33) yields a normalized shift of )0.254,
where Dzð1; 1; 2Þ � 0:174 is obtained from Eq. (20) or
(21). If the thin reference layer were measured by itself,
without the cube, Dzð1; 1; 0Þ ! 1 would apply and a
normalized shift of )0.667 would be found. The differ-
ence of these shifts, þ0.413, must be viewed as the in-
fluence which the bulk sample has on the reference layer.

A tilted sample with attached reference layer is treated

again in the fx; y; zg system of the sample block, by
rotating the direction of the main field BðoÞ about the y
axis. We start by considering the case h ¼ 90�, where
BðoÞ lies along the x direction, tangential to the reference
layer, and thereafter discuss the case of a general tilt

angle. For h ¼ 90�, the field at the surface (z ¼ þaz) of
the joint block can be found by a similar argument as

above, considering an M-block which has twice the

height of the sample. We are interested only in the x
component of HðSÞðrtÞ, parallel to BðoÞ. By adding the
second half of the M-block, this x component is dou-
bled, and the reference layer becomes the center plane of

the M-block. As there are no charges at the plane

z ¼ þaz, the spectral offset at points rt in the reference
compartment can be expressed simply as

dxRðrtÞ ¼ 1� 1Dxx;M-blockðrcÞ: ð34Þ

vxN 3 2
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Approximating again the field in the M-block by the
field in the inscribed M-spheroid yields

dxRðh ¼ 90�Þ
vxN

� 1
3
� 1
2
Dxðax; ay ; 2azÞ: ð35Þ

For the cubic sample considered above, we have

Dxð1; 1; 2Þ � 0:413 and obtain a normalized shift of
þ0:127. This may be compared with a shift of þ0:333 if
the reference layer were measured by itself with an x-
directed main field. The difference, )0.206, is the influ-
ence of the sample cube on the reference layer when
tilted to h ¼ 90�.
For a general tilt angle h, the BðoÞ field has compo-

nents along both the z and x directions. For either case
the demagnetizing field is known. By linear superposi-

tion of these fields with weighting factors sin h and cos h
we obtain from Eqs. (32,34) the normalized spectral

shifts for a surface position rt on a general sample

dxRðrtÞ
vxN

¼ � 1
2

1

3

�
þDzz;M-blockðrcÞ

�
þ sin

2 h
2

� ½1þDzz;M-blockðrcÞ �Dxx;M-blockðrcÞ	: ð36Þ

Here again, rt and rc denote the same point, but refer to

different blocks. The second bracket is the local anisot-

ropy. As it depends on the position rt at the surface, the

reference spectrum changes not only its offset dxR, but
also its lineshape, when the sample and attached reference
are jointly tilted. It is not possible, therefore, to express the

angular dependence in a precise, general form. However,

when we approximate the spectrum of the M-block by

the inscribed spheroid, we find from Eqs. (33) and (35),

independent of position in the reference compartment,

dxRðhÞ
vxN

� � 1
2

1

3

�
þ Dzðax; ay ; 2azÞ

�
þ sin

2 h
2

� ½1þ Dxðax; ay ; 2azÞ � Dzðax; ay ; 2azÞ	: ð37Þ

The first bracket is again the offset at h ¼ 0�. The second
one represents an anisotropy of the reference frequency

which must be attributed to the presence of the sample

compartment at one side of the reference compartment.

The concept described above may be generalized to a

situation where the susceptibilities of sample vS and
reference vR are different. If, in that case, h ¼ 0, an ad-
ditional charge density rðiÞ ¼ ðvS � vRÞHo must be ac-
counted for at the interface between sample block and

reference layer. The field in the reference layer is now the

sum of tree terms. The two fields produced by rðþÞ and
rðiÞ are essentially homogeneous. The third term results
from rð�Þ at the bottom of the block and is inhomoge-
neous. Its z component can again be obtained by means
of an M-block, having the susceptibility vS and the
height 4az. Instead of Eq. (32) we find

dxRðrtÞ
xN

¼ 1
3
� vS
2
2
vR
v

�
� 1þDzz;M-blockðrcÞ

�
:

S

5. Anisotropy of the layered block

A sample block assembled as a stack of coated glass

slides [1,8,9] shows anisotropic behavior on three scales.

First, there is macroscopic anisotropy if the axes ax; ay ; az
of the block have different lengths and/or if the material

of the block is anisotropic. These effects have been dis-

cussed above. Second, on a microscopic scale, anisotropy

may result from the layered structure because the mag-
netic susceptibility vG of the glass is generally different
from the that of the lipid. Third, anisotropy exists on a

molecular scale because the lipid bilayers spontaneously

orient themselves parallel to the glass surface. The sus-

ceptibility vL of the lipid material is a tensor, therefore,
with a component vLt for a magnetic field tangential to
the surface and vLn when the field is normal. To discuss
the role of the layered structure we repeat the calcula-
tions following Eq. (11), including now the anisotropy at

microscopic and molecular scales.

We start by treating the layered block as an aniso-

tropic, though homogeneous �mean� magnetic material,
exhibiting the average magnetization, MM ðrÞ ¼
bGMGðrÞ þ bLMLðrÞ. Here, bG and bL ¼ 1� bG are the
volume filling factors of glass and lipid, respectively.

Denoting the thicknesses of these layers by wG and wL,
we have bk ¼ wk=ðwG þ wLÞ for k ¼ G; L. On the mac-
roscopic scale, therefore, a block of this mean material

behaves magnetically identical to the block with layered

structure, B ¼ ð1þ vM ÞH with a tensor vM . The defini-
tion of this mean material is reasonable if the thicknesses

of the layers are small enough that the fields may be

considered homogeneous across each layer. For the

stack of coated glass slides this assumption is justified
throughout most of the volume except for a narrow

region at the four side walls in Fig. 1a whose width is

comparable to the thickness of the glass slides [1]. We

use this vM to calculate from Eq. (30) that part of the
line shift which results from the block- or spheroid-

shaped geometry of a sample.

On the microscopic scale, we consider the lipid layer

embedded in the mean material. The field H
ðLÞ
L ðrÞ inside

the lipid is found from the field H
ðLÞ
M ðrÞ in the mean ma-

terial by taking into account the �local demagnetization�
factor Dloc according to the orientation of the layers.
To determine vM we split all fields into their compo-

nents normal and tangential to the layers. In the lipid,

BL ¼ BLn þ BLt and HL ¼ HLn þHLt. Continuity rela-

tions at the interfaces between glass and lipid require

BMn ¼ BLn ¼ BGn and HMt ¼ HLt ¼ HGt. The compo-
nents of the mean susceptibility are defined through

BMt ¼ ð1þ vMtÞloHMt and HMn ¼ ð1� vMnÞBMn=lo, as-
suming that all susceptibilities are small. These relations

are consistent if we choose

vMn ¼ bGvG þ bLvLn; ð38Þ

v ¼ b v þ b v : ð39Þ
Mt G G L Lt
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The field H
ðSÞ
L at the site of the spin consist generally

of three contributions: the demagnetizing field H
ðSÞ
D;M of

the mean block, the local demagnetizing field H
ðSÞ
D;loc

resulting from the susceptibility mismatch between

the mean material and the lipid layer, and the field H
ðLÞ
L

of the Lorentz sphere. Considering first the situation

h ¼ 0�, when the field is normal to the layers, only the n-
components of the susceptibilities enter. We have

H
ðSÞ
D;M ¼ �vMnDzHo according to Eq. (30), and Dloc ¼ 1
in the second contribution. If the layered block is ro-

tated to h ¼ 90� the t-components matter, and
H

ðSÞ
D;M ¼ �vMtDxHo. In this orientation Dloc ¼ 0. In this
way we obtain the normalized line shift of a spin in the

lipid layer of a layered sample, tilted by h about the y
axis, in the approximation of the inscribed spheroid

dxðh ¼ 0�Þ
xN

¼ vMn
1

3

	
� Dz



� 2
3
ðvLn � vMnÞ; ð40Þ

dxðh ¼ 90�Þ
xN

¼ vMt
1

3

	
� Dx



þ 1
3
ðvLt � vMtÞ: ð41Þ

For intermediate angles of rotation, the frequency

shift interpolates according to sin2 h between these limits.
This can be concluded generally from the derivation

leading to Eq. (29). The first terms on the right hand sides

above are the shape anisotropies which appeared already

in Eq. (30). The additional terms result from the layered
structure. They are proportional to the susceptibility

mismatch between the lipid layer and the �mean�material
defined by Eqs. (38,39). In many practical situations the

lipid filling factor is small, bL � 1, and the �mean� ma-
terial is essentially equal to the glass used as substrate. If,

moreover, the lipid were magnetically isotropic, a

�structural� anisotropy of ðdx90 � dx0Þ=xN ¼ ðvL � vGÞ
would be measured between h ¼ 0� and h ¼ 90�, in ad-
dition to any shape anisotropy present. Inserting here

typical susceptibilities, vL � �8� 10�6 and vG � �12�
10�6, yields a value of � 4 ppm for the structural an-
isotropy and shows the significance of this effect.
6. Conclusions

A theoretical analysis has been performed of the

BMS induced shift and broadening of NMR lines in

block-shaped samples. The latter are typically obtained

by stacking a number of thin glass slides which support

uniaxially oriented biomembranes and a flat reference
layer attached on top. For their preparation and for

internal and external referencing of their spectra, a de-

tailed understanding of these BMS effects is helpful. The

key results are:

• Depending on the aspect ratio of the block, the BMS
induced shift may be positive or negative. The broad-

ening is asymmetric, with widely varying lineshapes.
• Sample and reference lines experience different shifts,
dxS and dxR. Their difference is the correction which
must be applied to a measured chemical shift.

• Explicit determination of the lineshape and shift is
possible by calculating from Eq. (23) the demagnetiz-

ing field at a large number of points in the block, and

then sorting the associated frequencies into a histo-

gram.

• Despite asymmetry of broadening, the resulting lines
generally have a pronounced peak.

• The spectral position of that peak, i.e., the line shift
caused by BMS effects in the volume of the sample

block, is close to that of the sharp line which would

result for the spheroid inscribed in the block. When

an axis of the block is aligned parallel to the field, this

shift in the spheroid is readily found from the ratios

of its semi-axes, using Eq. (20) or (21), or from
Fig. 5 (square blocks) or Fig. 6 (long stripes).

• A heuristic explanation of this volume effect is that
the inscribed spheroid occupies more than half of

the block volume and is dominant, therefore, in the

spectrum. The demagnetizing field of the eight corner

regions impairs the field homogeneity in the spheroid,

however, thus broadening its line.

• For a block tilted by h about one of its axes, the line
position interpolates as sin2 h between the two ex-
treme orientations h ¼ 0� and h ¼ 90�.

• When a substrate material (glass) is used to support
the oriented membranes, the apparent anisotropy

has contributions from the shape of the sample, from

the material anisotropy vLn � vLt of the lipid, and
from the susceptibility mismatch between glass and

lipid, depending also on the filling factor bL of the
lipid.

• For a thin external reference layer, attached to one
surface of the block, the BMS induced shift can

be found by evaluating the volume effect in a block

doubled about that surface.
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